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Abstract Quantitative trait loci (QTL) are most often
detected through designed mapping experiments. An
alternative approach is in silico mapping, whereby genes
are detected using existing phenotypic and genomic
databases. We explored the usefulness of in silico mapping
via a mixed-model approach in maize (Zea mays L.).
Specifically, our objective was to determine if the
procedure gave results that were repeatable across
populations. Multilocation data were obtained from the
1995–2002 hybrid testing program of Limagrain Genetics
in Europe. Nine heterotic patterns comprised 22,774 single
crosses. These single crosses were made from 1,266
inbreds that had data for 96 simple sequence repeat (SSR)
markers. By a mixed-model approach, we estimated the
general combining ability effects associated with marker
alleles in each heterotic pattern. The numbers of marker
loci with significant effects—37 for plant height, 24 for
smut [Ustilago maydis (DC.) Cda.] resistance, and 44 for
grain moisture—were consistent with previous results
from designed mapping experiments. Each trait had many
loci with small effects and few loci with large effects. For
smut resistance, a marker in bin 8.05 on chromosome 8
had a significant effect in seven (out of a maximum of 18)
instances. For this major QTL, the maximum effect of an
allele substitution ranged from 5.4% to 41.9%, with an
average of 22.0%. We conclude that in silico mapping via
a mixed-model approach can detect associations that are

repeatable across different populations. We speculate that
in silico mapping will be more useful for gene discovery
than for selection in plant breeding programs.

Introduction

Quantitative trait loci (QTL) in plants have usually been
detected through designed mapping experiments: an F2 or
backcross mapping population is first created by crossing
two inbreds, and a set of progenies is evaluated in a set of
locations and years (Dudley 1993; Kearsey and Farquhar
1998). An alternative approach is to map QTL from data
that are routinely generated in a breeding program. “In
silico mapping” is defined as the use of existing pheno-
typic and genomic databases for detecting genes (Grupe et
al. 2001).

Public and private plant breeding programs in major
crop species have accumulated massive amounts of
phenotypic data for different traits, but these data are
underutilized in QTL mapping. Compared with designed
mapping experiments, in silico mapping for quantitative
traits in plant breeding programs has four advantages.
First, in silico mapping exploits large mapping popula-
tions. In maize, for example, thousands of experimental
hybrids are evaluated each year (Smith et al. 1999). In
contrast, the small populations (e.g., fewer than 500
progenies) often used in designed mapping experiments
lead to a low power for detecting QTL (Melchinger et al.
1998), overestimation of QTL effects (Beavis 1994), and
imprecise estimates of QTL location (van Ooijen 1992;
Visscher et al. 1996). Second, the experimental hybrids or
inbreds are evaluated in multiple, diverse environments.
An experimental maize hybrid is typically evaluated in 20
environments; those that are eventually released as
cultivars are evaluated in up to 1,500 location-year
combinations (Smith et al. 1999). The use of many
environments permits the sampling of a sufficient set of
QTL × environment interactions so that the results would
be applicable across a wide range of future environments.
Third, the hybrids and inbreds tested typically comprise a
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wide sample of the germplasm and genetic backgrounds
that have been found useful. In contrast, only a narrow
genetic background is exploited in designed mapping
experiments that use F2 or backcross populations. Fourth,
the data used for in silico mapping are already available at
no extra cost.

Offsetting these advantages are two main complications
to in silico mapping. First, the performance data are highly
unbalanced: some hybrids or inbreds are evaluated in one
set of environments, whereas other hybrids or inbreds are
evaluated in a different set of environments. This results
from the screening process by which hybrids or inbreds
that fail to perform well are discarded, those that perform
well are subjected to more testing, and new hybrids or
inbreds are tested for the first time each year. Second, the
hybrids or inbreds do not comprise a single homogenous
population. Any in silico mapping procedure would
therefore have to account for pedigree relationships and
differences in the genetic backgrounds among hybrids or
inbreds.

The mixed-model approach, which leads to best linear
unbiased predictions (BLUP) of random genetic effects

and best linear unbiased estimates (BLUE) of fixed
environmental effects, has been successfully adapted in
plants (Bernardo 1994, 1996a; Panter and Allen 1995).
The mixed-model approach integrates both phenotypic
information and pedigree information in genetic evalua-
tion. The integration of genomic data in mixed-model
approach as originally proposed by Kennedy et al. (1992)
is therefore a logical extension of BLUP and BLUE with
phenotypic and pedigree data. Preliminary results in maize
indicate that the mixed-model approach is potentially
useful for in silico mapping of QTL (Bernardo 1998). One
criterion for assessing the usefulness of in silico mapping
is whether the procedure leads to repeatable results across
different populations. With this criterion, our objective
was to determine the usefulness of in silico mapping for
detecting QTL across data sets produced by a maize
breeding company.

Table 1 Estimates of variances
and heritability (h2) (ignoring
marker data) in different het-
erotic patterns of maize

aVG=VGCA(1)+VGCA(2)+VSCA
bHeritability among single
crosses on an entry-mean basis,
calculated as h2=VG/[VG+VR/
(average number of locations for
each single cross)]
cNot calculated due to an ex-
tremely large data set, i.e., 5,122
single crosses with grain-moist-
ure data available

Group Number of
single crosses

VR VGCA(1) VGCA(2) VSCA VSCA/VG h2

1 2

Plant height
A C 313 214.6 56.7 18.3 6.2 0.08a 0.71b

C D 232 272.5 16.3 121.6 7.0 0.05 0.78
D E 884 175.8 104.6 62.2 7.4 0.04 0.89
G I 644 137.1 44.9 69.5 7.0 0.06 0.81
C F 386 71.3 64.9 121.6 12.0 0.06 0.92
G F 500 73.3 78.8 119.8 12.1 0.06 0.93
B E 1,192 117.2 181.3 122.6 20.4 0.06 0.94
H F 535 73.3 67.4 116.8 19.8 0.10 0.92
H I 1,037 140.9 58.1 61.7 14.1 0.11 0.86
Smut resistance
A C 716 25.58 5.76 8.05 2.16 0.14 0.65
C D 361 11.65 2.55 0.40 0.11 0.04 0.48
D E 388 5.28 1.29 0.22 1.03 0.40 0.73
G I 1,135 35.86 8.97 7.76 1.37 0.08 0.58
C F 660 31.04 15.25 11.37 2.32 0.08 0.71
G F 789 39.14 9.72 8.61 0.60 0.03 0.57
B E 342 3.78 2.21 0.08 1.00 0.30 0.82
H F 963 37.85 14.58 10.58 3.01 0.11 0.64
H I 1,567 35.18 11.84 7.69 1.73 0.08 0.65
Grain moisture
A C 1,971 3.24 3.37 2.21 0.18 0.03 0.97
C D 1,170 3.76 2.25 3.24 0.32 0.05 0.96
D E 1,694 3.50 3.24 3.83 0.28 0.04 0.98
G I 3,457 2.54 1.53 4.83 0.20 0.03 0.97
C F 2,069 2.14 1.94 2.24 0.14 0.03 0.96
G F 2,445 2.26 1.60 2.19 0.16 0.04 0.96
B E 1,634 3.07 2.52 3.06 0.27 0.05 0.97
H F 3,212 2.17 2.85 2.04 0.18 0.04 0.96
H I 5,122 4.20 3.42 7.34 c 0.97
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Materials and methods

Germplasm and pedigree, marker, and performance data sets

A total of 1,266 inbreds used in the Limagrain Genetics maize
breeding program in Europe were classified into nine different
heterotic groups, denoted by A to I. There were 89 inbreds in group
A, 54 in B, 130 in C, 56 in D, 136 in E, 108 in F, 104 in G, 338 in H,
and 251 in I. Groups A and I comprised flint-dent inbreds, F
comprised flint inbreds, and the rest of the heterotic groups
comprised dent inbreds. From pedigree records, the coefficient of
coancestry among inbreds within each heterotic group was
calculated by tabular analysis (Emik and Terrill 1949). Within
each heterotic group, the minimum coefficient of coancestry
between inbreds was zero, i.e., unrelated inbreds. The maximum
coefficient of coancestry between inbreds was 0.53 in group B, 0.63
in groups C and G, and 0.75 in groups A, D, E, F, H, and I. The
genetic model for mixed-model analysis of single crosses required
the assumption that inbreds belonging to different heterotic groups
were unrelated.
Each inbred was fingerprinted using 96 SSR markers spread

across the maize genome. The size of the consensus map was
1,571 cM, and the number of markers per chromosome ranged from
six on chromosome 10 to 15 on chromosome 1. The average number
of bands per SSR marker was 12.7. Standard protocols (http://www.
maizegdb.org/documentation/maizemap/ssr_protocols.php) were
used for SSR analysis. For proprietary reasons we are unable to
provide information on the specific SSR markers used as well as
their map positions. This lack of information, however, did not
hinder us in our objective of determining the repeatability of results
from in silico mapping.
A heterotic pattern comprised a pair of complementary heterotic

groups. Nine heterotic patterns were considered. The hybrid
performance data set comprised results from multilocation yield
trials conducted by Limagrain Genetics from 1995 to 2002. Each
trial was conducted at 1–35 location(s) (with an average of six) in
France, Germany, Hungary, and Italy in a randomized complete
block design with one or two replications at each location. The
performance data set was highly unbalanced across multilocation
trials but (ignoring occasional missing plots) was balanced within
each multilocation trial. Each data point in the subsequent analysis
comprised the average performance of a single cross at several
locations in a multilocation trial, rather than the performance at an
individual location. Data for plant height (centimeters), resistance to
common smut [Ustilago maydis (DC.) Cda., percentage of infected
plants per plot], and grain moisture (percentage) were analyzed. For
grain moisture, the number of tested single crosses ranged from
1,170 in the C × D pattern to 5,122 in the H × I pattern, for a total of
22,774 single crosses across the nine heterotic patterns (Table 1).
However, not all of the 22,774 single crosses were evaluated for
plant height or smut resistance.

Mixed-model analysis

Preliminary analysis without marker data, performed as outlined by
Bernardo (1996a), indicated that specific combining ability was
minor for grain moisture, plant height, and smut resistance (Table 1).
Specific combining ability was therefore ignored in the analysis as
recommended by Bernardo (1996b). Heritability among single-cross
means was high for each trait, ranging from 0.71 to 0.94 for plant
height, from 0.48 to 0.82 for smut resistance, and from 0.96 to 0.98
for grain moisture (Table 1).
Consider a heterotic pattern between two heterotic groups, group

1 and 2. Suppose n single crosses were made between n1 inbreds
from group 1 and n2 inbreds from group 2. The single crosses were
evaluated in t different multilocation yield trials, resulting in p total
data points. A total of l1 SSR marker alleles were present among the
group 1 inbreds, whereas a total of l2 marker alleles were present
among the group 2 inbreds. With marker data, the linear model for
the performance of single crosses was

y ¼ X�þM1�1 þM 2�2 þ Z1g1 þ Z2g2 þ e

where y=p×1 vector of observed performance for a given
trait;� ¼ t � 1 vector of fixed effects associated with multilocation
trials;�1 ¼ l1 � 1 vector of general combining ability (GCA) effects
associated with marker alleles in group 1; �2 ¼ l2 � 1 vector of
GCA effects associated with marker alleles in group 2; g1=n1×1
vector of GCA effects not associated with marker alleles of group 1
inbreds; g2=n2×1 vector of GCA effects not associated with marker
alleles of group 2 inbreds; e=p×1 vector of residual effects; and X,
M1, M2, Z1, and Z2 were incidence matrices of 1s and 0s relating
y to �; �1; �2; g1; and g2 , respectively.
The effects associated with multilocation yield trials ð�Þ were

assumed fixed, although the individual environments—whose
effects were not specified in the model—were assumed random
(Bernardo 1996a). As is assumed in designed mapping experiments
for QTL and as proposed by Kennedy et al. (1992), the GCA effects
of marker allelesð�1 and �2Þ were assumed fixed. The GCA not
accounted for by the markers (g1 and g2) as well as e were assumed
random. The variances of these random effects were Var(g1)
=G1VGCA(1), Var(g2)=G2VGCA(2), and Var(e)=RVR, where
G1=n1×n1 matrix of coefficients of coancestry among group 1
inbreds; G2=n2×n2 matrix of coefficients of coancestry among group
2 inbreds; R=p ×p matrix where the off-diagonal elements were zero
and the ith diagonal element was the reciprocal of the number of
locations for the ith data point in y; VGCA(1)= variance of GCA
effects not associated with marker alleles in group 1; VGCA(2)
=variance of GCA effects not associated with marker alleles in
group 2; and VR=residual variance.
The BLUE of �; �1; and �2 and BLUP of g1 and g2 were

obtained by solving the following mixed-model equations:

�̂
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where �1 ¼ G�1
1 VR=VGCAð1Þ and �2 ¼ G�1

2 VR=VGCAð2Þ: Restricted
maximum likelihood estimates of the variances were obtained by
iterating on (Henderson 1985)

VR=[y′R
−1y−(solution vector) (right-hand side vector)]/[p

−(number of estimable fixed effects)]
VGCA(1)=[g1′G1

−1g1+VR trace (G1
−1C44)]/n1

VGCA(2)=[g2′G2
−1g2+VR trace(G2

−1C55)]/n2

GCA effects of marker alleles

For each heterotic pattern, GCA effects of marker alleles were
analyzed in two steps. In the first step, marker loci with significant
GCA effects were identified within each chromosome. We chose a
backwards elimination procedure because it allowed the examina-
tion of the full model (i.e., all markers) for each chromosome.
Because the overspecified effects approach (White and Hodge 1989,
p. 306) was used in the model, the GCA effect of an individual
marker allele was not estimable, but the difference in GCA effects
between two marker alleles at the same locus was estimable.
Significance (P=0.001) of pairwise differences in marker GCA
effects within a locus was determined by z-tests, given that the
variance of �̂1 was C22VR and the variance of �̂2 was C33VR
(Henderson 1985). A marker locus was then declared significant if it
had at least one significant within-locus pairwise difference.
In the second step, an across-genome analysis was performed

using those markers that had significant GCA effects in the per-
chromosome analyses. Marker loci with significant effects (P=0.05)
were retained. At each significant locus, the maximum effect of an

allele substitution was calculated as the maximum GCA effect
minus the minimum GCA effect at the same locus.
We counted the number of times a marker locus was found

significant across the nine heterotic patterns. A given marker locus
can be significant twice because the tests for marker GCA effects
were performed independently for each of the two heterotic groups
in a heterotic pattern. With nine heterotic patterns, a marker locus
can thus be significant up to 18 times in this study.
All of the analyses were performed using proprietary software,

written by R. Bernardo in 1994–1996 and by B. Parisseaux in 2003
and owned by Limagrain Verneuil Holding. In silico mapping via
mixed-model analysis was computer-intensive; a typical analysis for
one chromosome and one trait required two to three days of
computer time on a 1.2 GHz Pentium III machine with 512 MB of
RAM.

Results

The number of SSR loci (out of 96) that had a significant
GCA effect in at least one heterotic group was 37 for plant
height, 24 for smut resistance, and 44 for grain moisture
(Fig. 1). The number of significant marker loci on each
chromosome ranged from zero on chromosome 2 to nine
on chromosome 1 for plant height; from zero on
chromosome 3 to six on chromosome 4 for smut

Fig. 1 Frequency of significant marker general combining ability
(GCA) effects for plant height, resistance to common smut, and
grain moisture in maize. Heterotic groups (denoted A to I) in which

significant effects were detected are given above each bar. The
chromosome sizes are drawn to scale on the x-axis
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resistance; and from one on chromosome 10 to eight on
chromosome 3 for grain moisture.

For plant height, most of the significant marker loci
were detected only once or twice out of a possible
maximum of 18 times (Fig. 1). For this trait, the maximum
number of times a given marker had a significant effect
was four, i.e., a marker on chromosome 10 that had a
significant effect in two heterotic patterns that involved
group F, one heterotic pattern that involved group H, and
one heterotic pattern that involved group I (denoted by
FFHI in Fig. 1). The results for grain moisture were more
repeatable than those for plant height. For grain moisture,
one marker on chromosome 2 (EEFFH) and one marker on
chromosome 3 (CCCDD) were significant five times. The
most striking example of repeatability was for smut
resistance. One marker in bin 4.08 on chromosome 4 was
significant six times (GGHHII), whereas one marker in bin
8.05 on chromosome 8 was significant seven times
(CCEGGHH). This result for chromosome 8 was note-
worthy because none of the nine other markers on the
same chromosome had a significant effect in any heterotic
group. We therefore consider this result as evidence of a
major QTL for smut resistance on chromosome 8.

Some marker loci had significant effects in both groups
of a heterotic pattern, whereas other marker loci had
significant effects in only one group of a heterotic pattern.
For example, one of the markers on chromosome 5 was
significant for plant height in both groups of the G×I
heterotic pattern. The estimated effects expressed as the
maximum effect of an allele substitution at the locus were
17.3 cm in group G and 15.9 cm in group I. The five other
markers on chromosome 5 that were significant for plant
height had effects in one heterotic group only.

Marker loci on the same chromosome often had
significant effects in certain heterotic groups but not in
others. For plant height, the nine significant marker loci on
chromosome 1 had effects detected only in heterotic
groups E and B (Fig. 1). Out of these nine markers, seven

had significant effects in group E and were all detected in
the D×E heterotic pattern, whereas two had significant
effects in group B and were both detected in the B×E
heterotic pattern. For smut resistance, the two significant
marker loci on chromosome 2 had effects detected only in
group C. Four out of the six significant marker loci on
chromosome 4 had effects detected in groups G and H. For
grain moisture, the significant marker loci on chromo-
somes 1 and 6 were detected predominantly in group H.

The effects at marker loci varied. For the major QTL for
smut resistance on chromosome 8, the maximum effect of
an allele substitution ranged from 5.4% to 41.9%, with an
average of 22.0%. All three traits studied had many loci
with small effects and fewer loci with large effects (Fig. 2).
In most cases, the maximum effect of an allele substitution
was less than 35 cm for plant height, less than 15% for
smut resistance, and less than 4% for grain moisture. There
was clear evidence, however, of spurious effects for plant
height. In seven instances, the maximum effect of an allele
substitution was greater than 150 cm. This result was an
artifact given that maize in France, Germany, Hungary,
and Italy is generally 150–350 cm tall. An upper limit on
the maximum effect of an allele substitution is therefore
350–150=200 cm, and it is unlikely that QTL would have
effects that approach this limit.

Discussion

Number, location, and effects of QTL

The number of SSR markers with significant GCA effects
was consistent with the level of complexity of the trait. We
surmised that smut resistance was the simplest trait and
grain moisture was the most complex trait and, corre-
spondingly, we found that the number of significant
markers was smallest for smut resistance and largest for
grain moisture.

Fig. 2 Distribution of marker GCA effects for plant height, resistance to common smut, and grain moisture in maize. The maximum effect
of an allele substitution was the maximum GCA effect minus the minimum GCA effect at the same marker locus
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Because of differences in the germplasm used, the
numbers of QTL we detected through in silico mapping
were not directly comparable with those previously
detected through designed mapping experiments. On the
one hand, the wide range of germplasm sampled with in
silico mapping enhances the detection of many QTL. On
the other hand, mapping populations are often developed
by crossing two parents that are widely divergent for a
trait, e.g., susceptible parent and resistant parent for smut.
A diverse mapping population also enhances the detection
of many QTL. In the largest QTL mapping study
published in maize (976 families from an F2 population,
genotyped with 172 markers and evaluated in 19
environments), Openshaw and Frascaroli (1997) detected
36 significant markers for plant height and 32 for grain
moisture (data for smut resistance were absent). This result
for plant height (36 QTL) was consistent with the number
of significant markers we detected for plant height (37) via
in silico mapping. For grain moisture, we detected a larger
number of significant markers (44) than did Openshaw
and Frascaroli (1997), perhaps because of a wider range of
maturities sampled in our germplasm than in the single F2
population used by Openshaw and Frascaroli (1997). For
smut resistance, Lübberstedt et al. (1998) detected 19
significant markers across four populations, whereas
Kerns et al. (1999) detected 22 significant markers in
one population. These previous results were consistent
with the number of significant markers (24) we detected
for smut resistance.

Comparisons of QTL location among different studies
are difficult because of differences in map sizes and in the
sets of molecular markers used. Furthermore, meaningful
comparisons are difficult to make because significant
markers often span large chromosomal segments (e.g.,
chromosome 1 for plant height, Fig. 1), or many markers
across the genome have significant effects so that a QTL
detected in one study would tend to be also found in the
same general chromosomal location in another study.
Classic studies using chromosomal interchanges in maize
(Burnham and Cartledge 1939; Saboe and Hayes 1941)
indicated QTL for smut resistance on chromosome 8. The
restriction fragment length polymorphism marker with the
largest effect for smut resistance found by Kerns et al.
(1999) was in bin 8.01 on chromosome 8. The major QTL
we detected for smut resistance was in a different bin
(8.05) on chromosome 8.

The distribution of gene effects we detected by in silico
mapping (Fig. 2) was strikingly similar to previous
summaries of gene effects from designed QTL mapping
experiments (Kearsey and Farquhar 1998; Bernardo 2002,
p. 310). As with previous studies, our results supported the
model that quantitative traits are jointly controlled by
many loci with small effects and few loci with large
effects. But a few of our results for plant height (i.e.,
effects greater than 150 cm) indicate that caution is needed
in interpreting large estimated effects. These spurious
estimates were most likely due to multicolinearity or ill-
conditioning in the data. By this we mean that because of
linkage or statistical dependencies among the markers

used, the effects at separate marker loci were difficult to
estimate independently of each other. As Press et al. (1992,
p. 56) noted, ill-conditioning “pulls the solution vector
way off towards infinity along some direction” such that
the estimates of effects become meaningless. We used
standard methods to detect and reduce ill-conditioning
(Press et al. 1992, p. 56) when solving the mixed-model
equations, but more aggressive approaches seem needed.

Usefulness of in silico mapping via a mixed-model
approach

The detection of a QTL requires that the QTL is
segregating in the population being studied. This require-
ment has two important implications in our study. First, a
marker found significant in one heterotic group but not in
another does not necessarily imply an inconsistency due to
the in silico mapping method. Rather, this result may have
been due to QTL alleles being fixed in one heterotic group
but not in another, i.e., a limitation of the germplasm
studied rather than the method used. The detection of the
same significant markers across heterotic groups does
suggest, however, that in silico mapping via the mixed-
model approach is useful. Second, the estimates of marker
GCA effects were applicable only to the heterotic pattern
in which the effects were estimated. Consider a marker
allele (M1) in a particular heterotic group (C). The GCA
effects of M1 are evaluated in the C×D and C×F heterotic
patterns. As expected from a one-locus genetic model of
testcross effects (Rawlings and Thompson 1962), the GCA
effect of M1 in group C would be different from the GCA
effect of M1 in group D. Furthermore, the GCA effect of
M1 in the C×D heterotic pattern would differ from its
effect in the C×F heterotic pattern.

The two main phases in hybrid breeding are (1)
development of inbreds and (2) identification of superior
single-cross combinations among inbreds. Theoretical
(Bernardo 1999) and empirical (Bernardo 1998) results
indicate that QTL information is not useful in identifying
superior single crosses. Empirical results in maize (John-
son 2001, 2004) indicate that, in the context of hybrid
breeding, markers are useful mainly for improving the
mean performance of a base population from which
inbreds are later developed. The usefulness of in silico
estimates of QTL effects for marker-assisted recurrent
selection in a specific population needs to be studied. We
speculate, however, that in silico mapping via a mixed-
model approach will be more useful in gene discovery
than in selection. In this study, the prime example of this
potential for gene discovery was our detection of a major
QTL for smut resistance on chromosome 8.

We used SSR markers because they were the marker
system currently available. We envision that our approach
could be used to detect associations at a finer genetic level
(Mackay 2001), e.g., single nucleotide polymorphisms
within candidate genes. Also, interval mapping could, in
theory, be used in the in silico mapping procedure to
estimate the location of QTL within a marker interval. But
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the in silico mapping procedure without interval mapping
is already computationally demanding. Expanding the
methodology to include interval mapping would be
computationally prohibitive.

In conclusion, in silico mapping via a mixed-model
approach is useful from the standpoint that it can detect
associations that are repeatable across different popula-
tions. The main practical advantage of this approach is that
large data sets that already exist are exploited in QTL
mapping. We are currently conducting simulation studies
to determine the method’s statistical power for detecting
QTL both in self-pollinated crops and cross-pollinated
crops, assuming different trait heritabilities, sample sizes,
numbers of QTL, and marker densities.
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